
Am. J. Hum. Genet. 76:581–591, 2005

581

Strong Evidence That KIAA0319 on Chromosome 6p Is a Susceptibility
Gene for Developmental Dyslexia
Natalie Cope,1 Denise Harold,1 Gary Hill,1 Valentina Moskvina,2 Jim Stevenson,3
Peter Holmans,2 Michael J. Owen,1 Michael C. O’Donovan,1 and Julie Williams1

1Department of Psychological Medicine and 2Biostatistics and Bioinformatics Unit, Wales College of Medicine, Cardiff University, Cardiff;
and 3School of Psychology, University of Southampton, Southampton, United Kingdom

Linkage between developmental dyslexia (DD) and chromosome 6p has been replicated in a number of independent
samples. Recent attempts to identify the gene responsible for the linkage have produced inconsistent evidence for
association of DD with a number of genes in a 575-kb region of chromosome 6p22.2, including VMP, DCDC2,
KIAA0319, TTRAP, and THEM2. We aimed to identify the specific gene or genes involved by performing a
systematic, high-density (∼2–3-kb intervals) linkage disequilibrium screen of these genes in an independent sample,
incorporating family-based and case-control designs in which dyslexia was defined as an extreme representation of
reading disability. Using DNA pooling, we first observed evidence for association with 17 single-nucleotide poly-
morphisms (SNPs), 13 of which were located in the KIAA0319 gene ( ). After redundant SNPs wereP ! .01–.003
excluded, 10 SNPs were individually genotyped in 223 subjects with DD and 273 controls. Those SNPs that were
significant at were next genotyped in a semi-independent sample of 143 trios of probands with DD andP � .05
their parents, to control for possible population stratification. Six SNPs showed significant evidence of association
in both samples ( ), including a SNP (rs4504469) in exon 4 of the KIAA0319 gene that changes anP � .04–.002
amino acid ( ; odds ratio 1.5). Logistic regression analysis showed that two SNPs (rs4504469 andP p .002
rs6935076) in the KIAA0319 gene best explained DD status. The haplotype composed of these two markers was
significantly associated with DD (global in the case-control sample; in trios). This finding wasP p .00001 P p .02
largely driven by underrepresentation of the most common haplotype in cases ( in the case-controlP p .00003
sample; in trios; 1–degree-of-freedom tests). Our data strongly implicate KIAA0319 as a susceptibilityP p .006
gene for dyslexia. The gene product is expressed in brain, but its specific function is currently unknown.

Introduction

Developmental dyslexia (DD [MIM 600202]), or read-
ing disability, is a relatively common, complex cognitive
disorder that affects 5%–10% of school-aged children
(Shaywitz et al. 1992). The disorder is characterized by
an impairment of reading performance despite adequate
motivational, educational, and intellectual opportunities
and in the absence of sensory or neurological disability.
Although the pathophysiology of DD is unknown, there
is strong evidence that genes make a substantial contri-
bution to individual variation in risk of DD, with twin
studies reporting heritability estimates of up to 0.71
(Fisher 1905; Hinshelwood 1907; DeFries et al. 1987,
1991; Stevenson et al. 1987; Pennington et al. 1991;
Schulte-Körne et al. 1996). The mode of transmission is
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unknown, but DD is almost certainly a complex genetic
disorder in which multiple genes play a role (Hohnen
and Stevenson 1999).

Genetic linkage and association studies have impli-
cated a number of chromosomal regions that may har-
bor susceptibility genes for DD. Regions showing rep-
licated evidence for a role in DD include chromosome
1p (Rabin et al. 1993; Grigorenko et al. 2001; Tzenova
et al. 2004), 2p (Fagerheim et al. 1999; Francks et al.
2002; Petryshen et al. 2002; Kaminen et al. 2003; Chap-
man et al. 2004), 6p (Cardon et al. 1994, 1995; Gri-
gorenko et al. 1997, 2000, 2003; Fisher et al. 1999;
Gayán et al. 1999; Kaplan et al. 2002; Turic et al. 2003;
Chapman et al. 2004), 15q (Grigorenko et al. 1997;
Schulte-Körne et al. 1998; Morris et al. 2000), and 18p
(Fisher et al. 2002; Marlow et al. 2003; Chapman et
al. 2004).

We have sought to identify a gene(s) in the most con-
sistently supported region on chromosome 6p that shows
association with DD. The broadest evidence for linkage
stretches from marker D6S109 (Grigorenko et al. 1997)
to marker D6S291 (Fisher et al. 1999), a distance of
∼16 Mb, with numerous studies implicating regions be-
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tween these markers (D6S105–TNFB [Cardon et al.
1994, 1995], D6S109–D6S306 [Grigorenko et al.
1997] D6S276–D6S105 [Gayán et al. 1999] D6S464–
D6S273 [Grigorenko et al. 2000], D6S109–JA01,
D6S299–D6S1621, and D6S105–D6S265 [Grigorenko
et al. 2003]). A region between D6S461 and D6S105
shows greatest overlap between studies, spanning ∼4.2
Mb.

Recently, Deffenbacher and colleagues (2004) ex-
amined 10 candidate genes (VMP, DCDC2, MRS2L,
GPLD1, ALDH5A1, KIAA0319, TTRAP, THEM2,
C6orf62, and GMNN) in the ∼680 kb between markers
D6S276 and D6S1554, a region that yielded maximal
evidence for linkage in their sample. Thirty-one SNPs
were selected at a marker density of ∼1 marker per 20
kb; 13 of the SNPs provided some evidence for associa-
tion with at least one of the phenotypes analyzed (dis-
crepancy score, phoneme awareness, phoneme deletion,
word reading, and orthographic coding). These SNPs
were located in five genes: two in VMP, eight in DCDC2,
and one each in KIAA0319, TTRAP, and THEM2.
Francks and colleagues (2004) examined eight genes
(ALDH5A1, KIAA0319, TTRAP, THEM2, C6orf32,
SCGN, BTN3A1, and BTN2A1) on chromosome 6p as
candidates for DD on the basis of known brain ex-
pression. Fifty-seven SNPs were analyzed in 89 U.K.
families (sample 1). Association was detected in a 77-
kb region spanning TTRAP and the first four exons of
KIAA0319. In a second U.K. sample of 175 families
(sample 2), 20 of the SNPs were analyzed; weaker evi-
dence of association was found. It is noteworthy that
the effect was most pronounced in a sample of families
with probands representing the lower end of the read-
ing-ability spectrum. Twenty-one SNPs were also ana-
lyzed in a U.S. sample of 159 families (sample 3). Again,
association was observed in selected families represent-
ing the lower end of the reading-ability spectrum. A
three-marker haplotype was significantly associated in
both the U.S. sample and the combined U.K. sample,
with different alleles forming the most significant hap-
lotype in each sample.

Our study focused on the 575-kb region of chromo-
some 6p22.2, which was selected to include all genes
implicated in recent candidate-gene association studies
(Deffenbacher et al. 2004; Francks et al. 2004) and is
situated within a region that shows the most consistent
evidence of linkage (Deffenbacher et al. 2004; Francks
et al. 2004). Our analysis employs a high-density (137
SNPs in seven genes, at 2–3-kb intervals) screen for link-
age disequilibrium (LD) and uses both case-control and
family-based designs to take account of possible popu-
lation stratification.

The targeted genes comprise vesicular membrane pro-
tein p24 (VMP), doublecortin domain–containing 2
(DCDC2), kidney-associated antigen 1 (KAAG1), mag-

nesium homeostasis factor (MRS2L), KIAA0319, TRAF
and TNF receptor associated protein (TTRAP), thioes-
terase superfamily member 2 (THEM2), and chromo-
some 6 ORF 62 (C6orf62).

VMP is a neuron-specific vesicular membrane protein
that is thought to play a role in vesicular organelle trans-
port and neurotransmission (Cheng et al. 2002). DCDC2
is a ubiquitously expressed gene with a doublecortin-
homology domain. Doublecortin itself has been impli-
cated as a cause of X-linked lissencephaly (Gleeson et
al. 1998) and is involved in neuronal migration in the
CNS, including in the cortex (Gleeson et al. 1999).

KAAG1 is encoded on the strand that is opposite to—
and overlaps with—DCDC2. It is a kidney antigen–
associated gene, found in numerous tumors and normal
testis and kidney (Van Den Eynde et al. 1999). Although
it has no known CNS function, it was included in our
analysis since it is encoded on the strand that is opposite
to the DCDC2 gene and since it was covered by the SNP
grid encompassing that gene. MRS2L is a ubiquitously
expressed gene that is thought to encode a magnesium-
transporter protein (Zsurka et al. 2001).

KIAA0319 is a protein of unknown function that is
highly expressed in brain (Londin et al. 2003). The four
polycystic kidney disease (PKD) domains found in
KIAA0319 show homology to the extracellular domains
of the PKD protein PKD1, which are involved in cell-
adhesive functions (Streets et al. 2003).

TTRAP encodes a tumor necrosis factor receptor–
associated protein. It has been shown to inhibit nuclear
factor-kB (NF-kB) activation and subsequent downstream
activation of transcription (Pype et al. 2000). NF-kB
transcription has been shown to play a role in long-term
potentiation and synaptic plasticity associated with
learning and memory. In mice, inhibition of NF-kB has
been shown to result in neurodegenerative-like pheno-
types (Fridmacher et al. 2003). TTRAP can also interact
with the cytoplasmic TNF receptor–associated factors
(TRAFs) and with cytoplasmic domains of some mem-
bers of the TNF-receptor superfamily (Pype et al. 2000).

THEM2 encodes an uncharacterized hypothalamus
protein and is part of the thioesterase superfamily. The
thioesterase superfamily catalyzes the hydrolysis of long-
chain fatty acyl-CoA thioesters. It has been suggested
that abnormal fatty-acid metabolism plays a role in DD
(Richardson and Ross 2000; Richardson et al. 2000;
Taylor and Richardson 2000).

C6orf62 is a gene with unknown function that is
expressed ubiquitously, including in brain. Although not
part of the present study, aldehyde dehydrogenase 5 fami-
ly, member A1 (ALDH5A1 [succinate-semialdehyde de-
hydrogenase]), and glycosylphosphatidylinositol-specific
phospholipase D1 (GPLD1) on 6p22.2-p22.3, were pre-
viously examined using a direct gene-analysis approach
that is based on de novo polymorphism discovery and
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Figure 1 Flow diagram of the samples used at each stage of the analysis

analysis of all detected variants. Extensive analysis of
both genes failed to provide evidence for association
with DD (authors’ unpublished data).

This study thus provides a systematic, high-density
LD screen spanning putative functional candidates in a
region that shows the most consistent evidence of link-
age to DD. Our strategy employed both case-control
and family-based designs in which dyslexia was defined,
to capture the extreme end of the reading ability/dis-
ability continuum.

Material and Methods

Ethical approval was obtained from local ethics com-
mittees in the United Kingdom; appropriate and in-
formed written consent was obtained from subjects’ par-
ents. All participants were of white U.K. origin. Children
with DD—and, if available, their parents and siblings—
were ascertained in the United Kingdom through con-
tacts with local education authorities and schools spe-
cializing in the education of children with reading dif-
ficulties. The inclusion criteria for probands were an IQ
of �85 and a reading age �2.5 years behind that ex-
pected from chronological age. No age-IQ discrepancy
measures were employed. Four subtests from the WISC-
III UK were used to provide a prorated, full-scale IQ

score: Vocabulary, Similarities, Block Design, and Pic-
ture Completion (Wechsler 1992). The accuracy score
from the Neale (1989) analysis of reading ability was
used to determine reading age, except when probands
were aged 113 years, in which case, we used the accuracy
score of British Ability Scale (BAS) single-word reading
(Elliot 1983).

Initially, controls were adult white U.K. blood donors.
Subsequently, control children matched for age and sex
were ascertained from the same schools as the children
with DD. Children classed as controls were required to
have an IQ of �85 and a reading delay (RD) of no more
than 6 mo. Control children were assessed using the
accuracy score of the Neale (1989) analysis of reading
ability and/or BAS single-word reading (Elliot 1983) to
calculate reading age; the Vocabulary, Similarities, Block
Design, and Picture Completion subsets of WISC-III UK
enabled calculation of prorated IQ.

As a first pass, SNPs were analyzed in DNA pools.
Because of sample availability, early analyses (n p 56
SNPs) used case pools containing 140 unrelated pro-
bands with DD (mean age [� SD] years;13.22 � 2.3
mean RD [� SD] ; mean IQ [� SD]�5.07 � 1.76

; 116 males, 24 females) and 550 adult100.13 � 11.03
blood-donor controls (mean age years;41.39 � 12.5
391 male, 159 female) (fig. 1, Start Point A). Later,
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Table 1

All Pooled Genotyping Data

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

pooled analyses were based on an extension of the origi-
nal sample of subjects with DD ( unrelated pro-n p 240
bands with DD; mean age years; mean13.17 � 2.18
IQ ; mean RD ; 204 males,98.88 � 18.38 �4.93 � 1.87
36 females) and pools containing 312 age-matched and
screened controls (mean age years; mean11.98 � 2.39
IQ ; mean RD ; 178103.35 � 11.97 �1.14 � 1.45
males, 134 females) (fig. 1, Start Point B).

DNA was extracted from venous blood or 25 ml sa-
line mouthwashes by use of standard procedures (Mor-
ris et al. 2000). SNPs were selected from Ensembl or
SNPper (CHIP Bioinformatics Tools) for each of the
eight positional/functional candidate genes, at intervals
of ∼2–3 kb between each SNP. SNPs were also chosen
for analysis if they showed association in the study by
either Deffenbacher et al. (2004) or Francks et al. (2004),
excluding SNPs in LD ( ) with those we had2r � 0.80
already typed on the basis of HapMap data. A total of
137 SNPs were analyzed across the region. With the
exception of DCDC2, SNP grids extended from 3 kb
upstream to the predicted start of transcription across
all exons and introns. Introns 2, 7, and 8 of DCDC2
would have required 60–90 SNPs. Therefore, for prag-
matic reasons, we restricted our analysis at these introns
to 3 kb of flanking sequence on either side of each of
the exons.

Genotyping of DNA pools was undertaken using the
SNaPshot (Applied Biosystems) primer-extensionmethod
described by Norton and colleagues (2002). Pools were
carefully constructed by a serial dilution method, each
stage accompanied by quantitation of DNA concentra-
tion by use of the PicoGreen method, as we have de-
scribed in detail elsewhere (Norton et al. 2004). Mark-
ers were selected for individual genotyping if pooled
analysis revealed evidence for association with DD at
an estimated level of in the pooled samples ofP � .05
240 cases and 312 controls. However, to allow for the
smaller sample of cases ( ) in the early analysis,n p 140
those markers showing only a trend for association
( ) were regenotyped in the larger case pools andP � .1
were selected for individual genotyping if the trend
was confirmed at (see fig. 1). The pooling dataP � .05
presented in our tables reflect the analysis that is based
on the larger of the samples in which it was conducted.
SNPs selected for individual genotyping were examined,
and those subjects for whom we had sufficient DNA
(223 DD cases and 273 controls) were included in the
pooling experiments. Those markers for which individ-
ual genotyping in this case-control sample confirmed the
pooling data ( ) were then genotyped in a semi-P � .05
independent sample of 143 parent-proband trios to
ensure that the results were not attributable to popula-
tion stratification. Mean age of probands in the trio sam-
ple was years; mean IQ was13.17 � 2.08 104.01 �

; mean RD was . All but 25 of the11.88 �5.06 � 1.76

probands in the parent-proband trios were also included
in the case-control sample. When genotypes were avail-
able for these 25 individuals, they were included in the
final analysis of case-control association.

Individual genotyping was undertaken using a pro-
prietary Amplifluor (Serologicals) genotyping method.
Amplifluor reactions were performed in 5-ml reactions
containing 50 ng DNA, in accordance with manufac-
turer instructions. Primers were designed using Ampli-
fluor AssayArchitect and were obtained from Sigma-
Genosys. PCR reactions were performed under standard
conditions, with an initial denaturation stage of 96�C
for 4 min, then 19 cycles at 96�C for 10 s, at 58�C or
60�C for 5 s, and at 72�C for 10 s; followed by 22 or
27 cycles at 96�C for 10 s, 20 s at 55�C, and 40 s at
72�C; and a final extension step at 72�C for 3 min.
Genotypes were read on an LJL Biosystems Analyst.
When we were unable to optimize Amplifluor, RFLP
analysis of PCR products was undertaken. PCR reac-
tions were performed under standard conditions in 12-
ml reaction volumes with 32 ng of genomic DNA. Di-
gests were undertaken in 17-ml reactions by use of the
appropriate restriction enzyme (New England Biolabs),
in accordance with manufacturer instructions. Products
were visualized on 3% agarose gels stained with ethi-
dium bromide.

All genotypes were tested for Hardy-Weinberg equi-
librium with a x2 goodness-of-fit test (see the Simple
Interactive Statistical Analysis Web site). Analysis of LD
between markers ( and D′) was performed using Hap-2r
loview. Standard contingency tables were used for sin-
gle-marker case-control analysis. Trios were analyzed
using UNPHASED (Dudbridge 2003) (see the Rosalind
Franklin Centre for Genomics Research Web site). Hap-
lotypes were analyzed using EHPlus (Zhao et al. 2000)
and UNPHASED (Dudbridge 2003). Logistic and con-
ditional logistic regression analyses were performed on
case-control and trio data, respectively.

Results

Of the 137 SNPs analyzed in pools, 17 yielded evidence
for association at , and 13 of these were locatedP � .05
within KIAA0319 (see table 1 for results of the pooled
genotyping). Of these SNPs, 15 were then typed for 42
subjects with DD and 48 controls, to identify redundant
markers on the basis of marker-marker LD (the two
remaining SNPs, rs1555090 and rs926529, were known
to be in LD with other SNPs analyzed on the basis of
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Table 3

Genotype and Allele Counts for Selected SNPs in the Case-Control Sample

GENE, SNP,
AND SAMPLE

NO. OF SUBJECTS

WITH GENOTYPE

NO. (%) OF

ALLELES

P OR (95% CI)1-1 1-2 2-2 P 1 2

MRS2La:
rs2793422:

Cases 99 94 22
.03

304 (69) 138 (31)
.003 1.50 (1.14–1.96)

Controls 91 117 43 299 (60) 203 (40)
KIAA0319:

rs4504469a:
Cases 101 117 22

.002
319 (66) 161 (34)

.002 1.51 (1.17–1.95)
Controls 88 124 52 300 (57) 228 (43)

rs6911855:
Cases 200 17 1

.17
417 (96) 19 (04)

.07 .51 (.24–1.06)
Controls 253 12 0 518 (98) 12 (02)

rs6939068:
Cases 180 19 1

.16
379 (95) 21 (05)

.06 .52 (.26–1.04)
Controls 234 14 0 482 (97) 14 (03)

rs2179515a:
Cases 116 100 16

.008
332 (72) 132 (28)

.007 1.45 (1.11–1.90)
Controls 109 108 40 326 (63) 88 (37)

rs6935076a:
Cases 65 131 35

.006
261 (56) 201 (44)

.006 .70 (.54–.90)
Controls 107 118 30 332 (65) 178 (35)

rs2038137a:
Cases 112 104 13

.0001
328 (72) 130 (28)

.001 1.57 (1.20–2.05)
Controlsb 106 105 46 317 (62) 197 (38)

TTRAP:
rs2143340:

Cases 140 56 7
.26

336 (83) 70 (17)
.32 .83 (.58–1.19)

Controls 179 68 3 426 (85) 74 (15)
THEM2a:

rs3777664:
Cases 119 92 13

.02
330 (74) 118 (26)

.008 1.45 (1.10–1.92)
Controls 112 113 31 337 (66) 175 (34)

Intergenica:
rs1053598:

Cases 124 92 9
.05

340 (76) 110 (24)
.03 1.36 (1.03–1.81)

Controls 123 112 23 358 (69) 158 (31)

NOTE.—Genotypic and allelic P values are given, as are ORs and 95% CIs. P values �.05 are indicated
in bold italics.

a Case-control analysis includes 25 extra probands from the proband-parent trios.
b Genotypes deviate from Hardy-Weinberg equilibrium.

HapMap data). In an attempt to replicate the most sig-
nificant haplotype of Francks and colleagues (2004), we
also genotyped rs2143340, although this SNP did not
show significant evidence for association in DNA pools.
Perfect LD ( was noted for several of the markers2r p 1)
in KIAA0319 (see table 2). Genotyped markers showing
LD, as assessed by , of at least 0.8 were dropped. On2r
this basis, a minimal set of 10 markers was chosen for
individual genotyping in the case-control sample (see
table 3).

All genotypes were in Hardy-Weinberg equilibrium
for cases and controls and probands and parents, except
for SNP rs2038137) (located near the exon 1/intron 1
boundary of KIAA0319), which showed slight distor-
tion in the controls ( ). Our most significant re-P p .03

sults ( ) were found in KIAA0319, MRS2L, andP � .01
THEM2 in the case-control sample (see table 3). To
ensure that these data did not arise from population
stratification, the seven markers that were significant in
the case-control sample at were then individu-P � .05
ally genotyped in a sample of 143 parent-proband trios
(table 4). This also provides for a degree of independ-
ence, since the control (nontransmitted) alleles are in-
dependent of the controls in the case-control study. Af-
ter this step, six SNPs remained significant—three in the
KIAA0319 gene (family-based, ; case-con-P p .04–.002
trol, ), one in MRS2L (family-based,P p .007–.001

; case-control, ), and two in or flank-P p .04 P p .003
ing the THEM2 gene (family-based, ; case-P p .03–.01
control, ). Two of these SNPs (rs4504469P p .03–.008
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Table 4

Transmission of Alleles at Selected SNPs in the Parent-Proband
Trios

GENE, SNP,
AND TRANSMISSION

NO. (%) OF ALLELES

P OR (95% CI)a1 2

MRS2L:
rs2793422:

Transmitted 191 (71) 79 (29)
.04 1.47 (1.02–2.1)Nontransmitted 168 (62) 102 (38)

KIAA0319:
rs4504469:

Transmitted 166 (68) 78 (32)
.04 1.48 (1.02–2.14)Nontransmitted 144 (59) 100 (41)

rs2179515:
Transmitted 184 (71) 77 (30)

.04 1.46 (1.01–2.10)Nontransmitted 162 (62) 99 (38)
rs6935076:

Transmitted 154 (56) 120 (44)
.002 .57 (.41–.82)Nontransmitted 189 (69) 85 (31)

rs2038137:
Transmitted 169 (69) 77 (31)

.11 1.36 (.94–1.97)Nontransmitted 152 (62) 94 (38)
THEM2:

rs3777664:
Transmitted 165 (74) 59 (26)

.03 1.55 (1.04–2.33)Nontransmitted 144 (64) 80 (36)
Intergenic:

rs1053598:
Transmitted 186 (76) 59 (24)

.01 1.67 (1.13–2.48)Nontransmitted 160 (65) 85 (35)

NOTE.—P values for association were calculated using UNPHASED (Ros-
alind Franklin Centre for Genomics Research). P values �.05 are indicated
in bold italics.

a ORs and 95% CIs refer to allele 1.

Table 5

Analysis of Haplotypes in KIAA0319 Comprising SNPs
rs4504469 and rs6935076 in 248 Subjects with DD
and 273 Controls

ALLELE AT SNP FREQUENCY IN
HAPLOTYPE

Pars4504469 rs6935076 Cases Controls

1 1 .31 .27 .26
1 2 .35 .30 .02
2 1 .25 .39 .00003
2 2 .09 .05 .17

a Global .P p .0001

and rs2179515) were reported in the study by Francks
et al. (2004) to be associated with a number of com-
ponential measures of DD in the combined U.K. sample.
Both are located in the KIAA0319 gene ( ).2r p 0.55

To determine which SNPs accounted for the associa-
tion, stepwise logistic regression analyses were performed
on the case-control and trio data on the basis of all SNPs
for which we had individual genotyping data (see ta-
bles 3 and 4). For the case-control sample, the SNPs—
rs2793422 (MRS2L); rs4504469, rs6911855, rs6939068,
rs2179515, rs6935076, and rs2038137 (KIAA0319);
rs2143340 (TTRAP); rs3777664 (THEM2); and Inter-
genic rs1053598—were initially submitted into the lo-
gistic regression model ( ; 10 df). The stepwiseP p .029
procedure reduced the number of SNPs to three—
rs2793422 (MRS2L) and rs4504469 and rs6935076
(KIAA0319)—that showed a highly significant fit (P p

; 3 df). For the proband-parent trios, the pro-.00002
bands were considered as cases, and nontransmitted al-
leles were employed to create pseudocontrols (Cordell
and Clayton 2002). These data were submitted into
conditional logistic regression analyses ( ; 7P p .347
df). The best model was again identified by use of a
stepwise procedure ( ; 2 df) that removed everyP p .02
SNP except SNPs rs4504469 and rs6935076. The ad-

dition of rs2793422 did not significantly improve the
model ( [log-likelihood ratio test]). rs4504469P p .10
is a nonsynonymous SNP in exon 4 (AlarThr), and
rs6935076 is located in intron 1 of the KIAA0319 gene
(see fig. 2).

On the basis of the results of the regression analysis,
we analyzed the two-marker haplotype that consisted
of the KIAA0319 SNPs rs4504469 and rs6935076 in
the case-control and trio samples (see tables 5 and 6).
Significant evidence for association was obtained on the
basis of the global test ( in the case-controlP p .0001
sample; in trios). In each sample, the 1-2 hap-P p .02
lotype was associated with DD, but more striking is the
significant underrepresentation of haplotype 2-1 in the
cases based on the case-control ( ; odds ratioP p .00003
[OR] 0.53; 95% CI 0.40–0.70) and family-based (P p

; OR 0.57; 95% CI 0.39–0.84) analyses. (Fig. 2.006
summarizes our results.)

We also analyzed the three-marker haplotype that con-
sisted of rs4504469, rs2038137, and rs2143340, which
was reported as significantly associated with DD by
Francks and colleagues (2004). This haplotype did not
yield global evidence for association in our sample (see
table 7). Two individual haplotypes did, however, show
evidence for association with DD. The 1-1-1 haplotype
was more frequent in subjects with DD than in control
individuals ( ). The 2-2-1 haplotype, which wasP p .03
significantly associated with the READ phenotype in the
combined U.K. sample of the study by Francks et al.
(2004), also displayed evidence of association with DD
in our case-control sample ( ) and showed theP p .01
same direction of effect (in their study, the 2-2-1 hap-
lotype was associated with better performance; in our
sample, this haplotype was more frequent in control
individuals). In our sample, this haplotype is, in fact,
perfectly defined by the first two SNPs (since there was
no observation of the 2-2-2 haplotype). We therefore
excluded rs2143340 and looked at the two-marker hap-
lotype (2-2) that consisted of the other two SNPs in our
family-based sample, but, although it was undertrans-
mitted to the probands, this was not significant (P p

). It should be noted that, since rs4504469 shows.10
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Table 6

Analysis of Haplotypes in KIAA0319 Comprising SNPs rs4504469
and rs6935076 in a Sample of 143 Families with DD

ALLELE AT SNP FREQUENCY
HAPLOTYPE

Pars4504469 rs6935076 Transmitted Nontransmitted

1 1 .32 .32 .95
1 2 .35 .27 .03
2 1 .24 .36 .006
2 2 .09 .05 .22

a Global .P p .02

Table 7

Haplotype Analysis Spanning KIAA0319 and TTRAP

ALLELE AT SNP FREQUENCY IN
HAPLOTYPE

Pars4504469 rs2038137 rs2143340 Cases Controls

1 1 1 .47 .41 .03
1 1 2 .15 .12 .21
1 2 1 .04 .05 .66
2 1 1 .07 .08 .67
2 1 2 .02 .02 .67
2 2 1 .25 .33 .01

NOTE.—Analysis of haplotypes comprising SNPs rs4504469,
rs2038137, and rs2143340 in 223 subjects with DD and 273 controls.
The 1-1-2 haplotype was observed by Francks et al. (2004) to be
significantly associated with a number of reading-related measures but
is not significant in our sample.

a Global .P p .10

more significance individually than does the 2-2-1 hap-
lotype, no extra information was obtained from this
haplotype in our sample. Moreover, the 1-1-2 haplotype
that was reported to show association with componen-
tial measures of DD in both the U.S. sample and the
combined U.K. sample in the study by Francks et al.
(2004) was not significantly associated with DD in our
sample ( ).P p .21

Discussion

Previous linkage and association studies of DD and
chromosome 6p have implicated a region between mark-
ers D6S461 and D6S105. More recently, following
other positional candidate-gene studies, VMP, DCDC2,
KIAA0319, TTRAP, and THEM2 have been suggested
as possible susceptibility genes within this region
(Deffenbacher et al. 2004; Francks et al. 2004). Our
study tested for association with each of these genes
(VMP, DCDC2, KAAG1, MRS2L, KIAA0319, TTRAP,
THEM2, and C6orf62) by use of a high-density SNP
map and an independent sample. Initially, we genotyped
DNA pools from subjects and controls and followed up
those findings with individual genotyping in a case-con-
trol sample and a nested family-based association sam-
ple. In both samples, we observed evidence for associa-
tion with three SNPs in KIAA0319 (rs4504469, P p

; rs2179515, ; and rs6935076, ),.002 P p .007 P p .006
with one SNP in MRS2L (rs2793422, ) and inP p .003
THEM2 (rs3777664, ), and with an inter-P p .008
genic SNP (rs1053598, ). Two of these SNPs,P p .02
rs4504469 and rs2179515 (both located in KIAA0319),
have been reported elsewhere to display significant as-
sociation with a number of componential measures of
DD in a U.K. sample (Francks et al. 2004). Our results
support existing data (Deffenbacher et al. 2004; Francks
et al. 2004) that implicate genes in this region in DD,
and our results extend the previous findings by dem-
onstrating that the source of the signal is likely to be
variation in KIAA0319. The study by Francks and
colleagues (2004) implicated a region containing
KIAA0319, TTRAP, and THEM2, whereas that of Def-
fenbacher and colleagues (2004) implicated KIAA0319,
DCDC2, VMP, TTRAP, and THEM2. Combining their

data with our own produces a pattern of evidence that
implicates KIAA0319 as a susceptibility gene for DD.

This is compatible with the logistic regression and
conditional logistic regression analyses in our case-con-
trol and proband-parent trio samples, respectively. Case-
control data analyses with the use of a stepwise procedure
revealed three SNPs that account for the association ob-
served: rs2793422 in MRS2L and rs4504469 and
rs6935076 in KIAA0319 ( ). Analysis of theP p .00002
proband-parent trios identified two SNPs that account
for the association observed: rs4504469 and rs6935076
( ). The results, therefore, are consistent withP p .03
crude inspection of the genes showing overlap between
the studies and provide strong evidence that KIAA0319
SNPs rs4504469 and rs6935076 are responsible for the
association with DD observed in this study. A haplotype
comprising these two SNPs is highly significantly as-
sociated with DD in both the case-control sample
( ) and the trio sample ( ). This ef-P p .00003 P p .006
fect is largely driven by haplotype 2-1 as a “protective”
haplotype.

Although the logistic regression analyses imply that,
of the markers tested, rs4504469 and rs6935076 can
account for the association signal, this does not imply
that they are the direct susceptibility alleles, per se.
However, interestingly, rs4504469 (one of the two SNPs
that makes up our most significant haplotype) is a non-
synonymous SNP (AlarThr), which suggests the pos-
sibility that this might, in part, contribute directly to
the association. However, in our own sample, the threo-
nine at this locus that is present on the protective
rs4504469/rs6935076 2-1 haplotype is also present on
the 2-2 haplotype (tables 5 and 6), which is more com-
mon in cases, albeit not significantly more so. This sug-
gests that, if the nonsynonymous change at rs4504469
can influence risk of DD directly, then its effects can be
modified by a second susceptibility allele in the gene.
Given that the SNP showed the same pattern of allelic
association in the U.K. sample of Francks and colleagues
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Figure 2 Location of candidate genes on chromosome 6p. The location of SNPs found to be significant ( ) in our case-controlP � .05
sample are shown relative to nearby markers. The direction of transcription is shown for each gene. LD blocks across the region are based on
data from HapMap. The P value refers to the most significant haplotype (2-1) comprising the two SNPs indicated. An asterisk (*) indicates
the amino acid–changing SNP in exon 4.

(2004) but not their U.S. sample, perhaps a more likely
explanation is that this SNP does not directly influence
susceptibility to DD. Thus, although our study provides
strong evidence that variation in the KIAA0319 gene is
associated with increased risk of developing dyslexia,
the true susceptibility alleles remain to be identified.

Acknowledgments

We thank all the parents and children who took part in this
study, and we are grateful to the Health Foundation (reference
number 2263/1921), the Cardiff University Ph.D. Fund, and
the U.K. Medical Research Council Cooperative Group Grant
(APP1485) for funding this research. We also thank the Welsh
Assembly Government for supporting the Biostatistics and
Bioinformatics Unit, in which V.M. is employed.

Electronic-Database Information

The URLs for data presented herein are as follows:

Amplifluor AssayArchitect https://apps.serologicals.com/AAA/

CHIP Bioinformatics Tools, http://snpper.chip.org/ (for SNPper)
Ensembl Genome Browser, http://www.ensembl.org/
Haploview, http://www.broad.mit.edu/mpg/haploview/index

.php
International HapMap Project, http://www.hapmap.org/ (for

LD data)
Online Mendelian Inheritance in Man (OMIM), http://www

.ncbi.nlm.nih.gov/Omim/ (for DD)
Rosalind Franklin Centre for Genomics Research, http://www

.hgmp.mrc.ac.uk/ (for the UNPHASED application)
Sigma-Genosys, http://orders.sigma-genosys.eu.com
Simple Interactive Statistical Analysis, http://home.clara.net/

sisa/ (for x2 tests of association)

References

Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington
BF, DeFries JC (1994) Quantitative trait locus for reading
disability on chromosome 6. Science 266:276–279

——— (1995) Quantitative trait locus for reading disability:
correction. Science 268:1553

Chapman NH, Igo RP, Thomson JB, Matsushita M, Brkanac
Z, Holzman T, Berninger VW, Wijsman EM, Raskind WH



590 Am. J. Hum. Genet. 76:581–591, 2005

(2004) Linkage analyses of four regions previously implicated
in dyslexia confirmation of a locus on chromosome 15q. Am
J Med Genet B 131:67–75

Cheng C, Xu J, Ye X, Dai J, Wu Q, Zeng L, Wang L, Zhao
W, Ji C, Gu S, Xie Y, Mao Y (2002) Cloning, expression
and characterization of a novel human VMP gene. Mol Biol
Rep 29:281–286

Cordell HJ, Clayton DG (2002) A unified stepwise regression
procedure for evaluating the relative effects of polymor-
phisms within a gene using case/control or family data: ap-
plication to HLA in type 1 diabetes. Am J Hum Genet 70:
124–141

Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pen-
nington BF, DeFries JC, Smith SD (2004) Refinement of the
6p21.3 quantitative trait locus influencing dyslexia: linkage
and association analyses. Hum Genet 115:128–138

DeFries JC, Fulker DW, Labuda MC (1987) Reading disability
in twins: evidence for a genetic aetiology. Nature 329:537–
539

DeFries JC, Olson R, Pennington BF, Smith SD (1991) Col-
orado reading project: past, present, and future. Learn Dis-
abil 2:37–46

Dudbridge F (2003) Pedigree disequilibrium tests for multil-
ocus haplotypes. Genet Epidemiol 25:115–221

Elliot CD (1983) British ability scales. NFER-Nelson, Windsor,
United Kingdom

Fagerheim T, Raeymaekers P, Tønnessen FE, Pedersen M, Tra-
nebjærg L, Lubs HA (1999) A new gene (DYX3) for dyslexia
is located on chromosome 2. J Med Genet 36:664–669

Fisher JH (1905) Case of congenital word blindness (inability
to learn to read). Ophthal Rev 24:315

Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF,
Cardon LR, Ishikawa-Brush Y, Richardson AJ, Talcott JB,
Gayán J, Olson RK, Pennington BF, Smith SD, DeFries JC,
Stein JF, Monaco AP (2002) Independent genome-wide scans
identify a chromosome 18 quantitative-trait locus influenc-
ing dyslexia. Nat Genet 30:86–91

Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF,
Richardson AJ, Weeks DE, Stein JF, Monaco AP (1999) A
quantitative-trait locus on chromosome 6p influences dif-
ferent aspects of developmental dyslexia. Am J Hum Genet
64:146–156

Francks C, Fisher SE, Olson RK, Pennington BF, Smith SD,
DeFries JC, Monaco AP (2002) Fine mapping of the chro-
mosome 2p12-16 dyslexia susceptibility locus: quantitative
association analysis and positional candidate genes SEMA4F
and OTX1. Psychiatr Genet 12:35–41

Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS,
Cardon LR, Marlow AJ, MacPhie IL, Walter J, Pennington
BF, Fisher SE, Olson RK, DeFries JC, Stein JF, Monaco AP
(2004) A 77-kilobase region of chromosome 6p22.2 is as-
sociated with dyslexia in families from the United Kingdom
and from the United States. Am J Hum Genet 75:1046–1058

Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM,
Pfeiffer J, Kaltschmidt C, Israel A, Memet S (2003) Fore-
brain-specific neuronal inhibition of nuclear factor-kB activi-
ty leads to loss of neuroprotection. J Neurosci 23:9403–9408

Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower
AM, Olson RK, Pennington BF, DeFries JC (1999) Quan-

titative-trait locus for specific language and reading deficits
on chromosome 6p. Am J Hum Genet 64:157–164

Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S,
Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross
ME, Walsh CA (1998) Doublecortin, a brain-specific gene
mutated in human X-linked lissencephaly and double cortex
syndrome, encodes a putative signaling protein. Cell 92:63–
72

Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Double-
cortin is a microtubule-associated protein and is expressed
widely by migrating neurons. Neuron 23:257–271

Grigorenko EL, Wood FB, Golovyan L, Meyer M, Romano C,
Pauls D (2003) Continuing the search for dyslexia genes on
6p. Am J Med Genet B Neuropsychiatr Genet 118:89–98

Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC,
Shuster A, Pauls DL (1997) Susceptibility loci for distinct
components of developmental dyslexia on chromosome 6 and
15. Am J Hum Genet 60:27–39

Grigorenko EL, Wood FB, Meyer MS, Pauls DL (2000) Chro-
mosome 6p influences on different dyslexia-related cognitive
processes: further confirmation. Am J Hum Genet 66:715–
723

Grigorenko EL, Wood FB, Meyer MS, Pauls JED, Hart LA,
Pauls DL (2001) Linkage studies suggest a possible locus
for developmental dyslexia on chromosome 1p. Am J Med
Genet 105:120–129

Hinshelwood J (1907) Four cases of hereditary word-blindness
occurring in the same family. Brit Med J 2:1229–1232

Hohnen B, Stevenson J (1999) The structure of genetic influences
on general cognitive, language, phonological, and reading
abilities. Dev Psychol 35:590–603

Kaminen N, Hannula-Jouppi K, Kestilä M, Lahermo P, Muller
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